

The Ghana 32m Radio Telescope (Nk)

Bernard Duah Asabere (Research Scientist, GSSTI & Manager, GRAO)

EVN TOG MEETING @ SHANGHAI-CHINA, March 19, 2018

Credit: EVN TOG MEETING SHANGHAI 2018

This presentation has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 730562 [RadioNet]

Acknowledgement:

Outline

- Introduction of Nk; GRAO
- Current State of Nk and the way forward

• Impact of Nk, the Ghana Radio Telescope

Capacity Building in Radio Astronomy

• Future of the GRAO: Nk

Nk: Ghana 32m Radio Telescope (GRAO)

AVN Ghana Project

- Hosted at GRAO (Ghana Radio Astronomy Observatory)
- Located at Kuntunse, a suburb 25km west of Accra
- Converted and refurbished telescope from a disused Satellite Communication Earth Station Antenna
- First AVN operational radio telescope (AVN Ghana)

GRAO, Kuntunse, Accra - Ghana

White Dots: Redundant satellite communication earth station antennas across Africa <u>4</u> Credit: Michael Gaylard

Official Launch: August 24, 2017

Previational Aliando Additor stanting a place site mark.

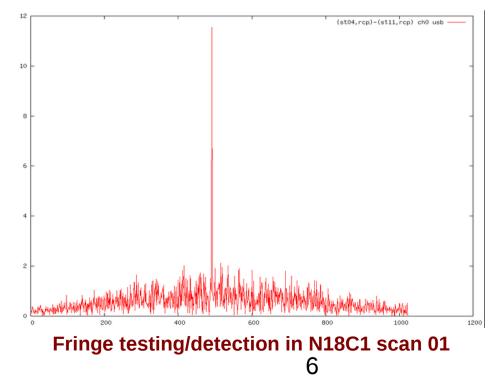
Ghana launches radio telescope Story on

To harness potential of space science

page 3

Appearance in EVN Observations: Nk

EVN Observations


- Still in early science mode or commissioning stage
- Joined a couple of times since last year (Feb. 2017) with Dr. James Chibueze as the lead VLBI astronomer
- Participated in latest observations (i.e., N18C1) on May 05, 2018
- And performed not badly at all in fringe testing/detections

	J.	b W]	b Ei	E Mo	c Nt	: 08	8 T6	U1	: T)	: Ya	3 S1	r Bo	l Zo	: Hł	n I}) Kn	n N)	: Cr	n Da	a Kr	n Ta	l De	e
Observed	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
Frng.(ftp)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N	N	N	N	
Record. OK	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
Crs.pols OF	K Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
Check VCs		I																					
See notes		b					C				a						d	e	e	e	e	e	

Participation in N18C1 Observations on May 05, 2018

Nk		- +	+ -	+ +	invalid	avg sign bit	avg mag bit
4966.49MHz, LSB, Rcp	1.531%	2.543%	2.533%	1.518%	91.87%	0.4986	0.4998
4966.49MHz, LSB, Lcp	1.525%	2.547%	2.537%	1.516%	91.87%	0.4989	0.5001
4966.49MHz, USB, Rcp	1.494%	2.513%	2.544%	1.574%	91.87%	0.5069	0.503
4966.49MHz, USB, Lcp	1.481%	2.524%	2.563%	1.557%	91.87%	0.507	0.5022
4982.49MHz, LSB, Rcp	1.528%	2.549%	2.538%	1.509%	91.87%	0.4981	0.4995
4982.49MHz, LSB, Lcp	1.524%	2.547%	2.535%	1.52%	91.87%	0.499	0.5004
4982.49MHz, USB, Rcp	1.48%	2.519%	2.56%	1.565%	91.87%	0.5078	0.5027
4982.49MHz, USB, Lcp	1.482%	2.526%	2.561%	1.556%	91.87%	0.5067	0.5024
4998.49MHz, LSB, Rcp	1.528%	2.548%	2.54%	1.51%	91.87%	0.4984	0.4994
4998.49MHz, LSB, Lcp	1.525%	2.549%	2.539%	1.511%	91.87%	0.4986	0.4997
4998.49MHz, USB, Rcp	1.489%	2.511%	2.553%	1.573%	91.87%	0.5078	0.5026
4998.49MHz, USB, Lcp	1.49%	2.516%	2.55%	1.568%	91.87%	0.5069	0.5027
5014.49MHz, LSB, Rcp	1.534%	2.545%	2.532%	1.514%	91.87%	0.498	0.4996
5014.49MHz, LSB, Lcp	1.532%	2.539%	2.536%	1.518%	91.87%	0.4989	0.4993
5014.49MHz, USB, Rcp	1.506%	2.489%	2.541%	1.589%	91.87%	0.5083	0.5019
5014.49MHz, USB, Lcp	1.481%	2.521%	2.562%	1.561%	91.87%	0.5075	0.5024

Performance in N18C1 Observations

Still in Early Science Operations Mode

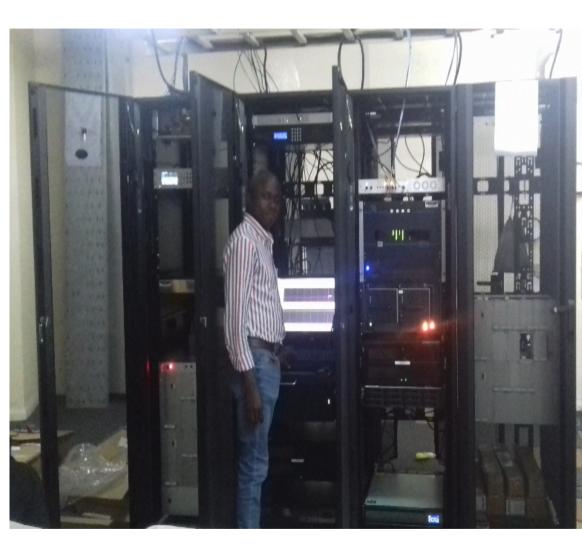
Testing system in both: * Single Dish Mode * Network (VLBI) Mode

A probable publication from the test observations (verification and validation events)

Pulsar Observations at the Ghana Radio Astronomy Observatory

T. W. Scragg¹, B. W. Stappers¹, R. P. Breton¹, J. N. Smith², D. Adomako³, B. Duah Asabere³, J. O. Chibueze², and K. Cloete²,

¹Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, UK. ²SKA-SA, The Park, Park Road, Pinelands, Western Cape, SA. ³Ghana Space Science and Technology Institute, P. O. Box LG80 Legon-Accra, Ghana. email: thomas.scragg@postgrad.manchester.ac.uk


Current State of Nk

- Uncooled dual pol. receiver system: (using Rb GPS clock)
- Operational frequencies
 * 5 GHz (124 MHz)
 * 6.7 GHz (370 MHz)
- Azimuth range:
 8 327 deg
 (Az challenge: 327 352 deg)
- Elevation range: 5 - 90 deg (science purpose: > 10 deg)
- Slew rate (max. speed): 0.27 – 0.29 deg/sec
- Angular Resolution at 6.7GHz: 6 arcmin (0.1 deg).

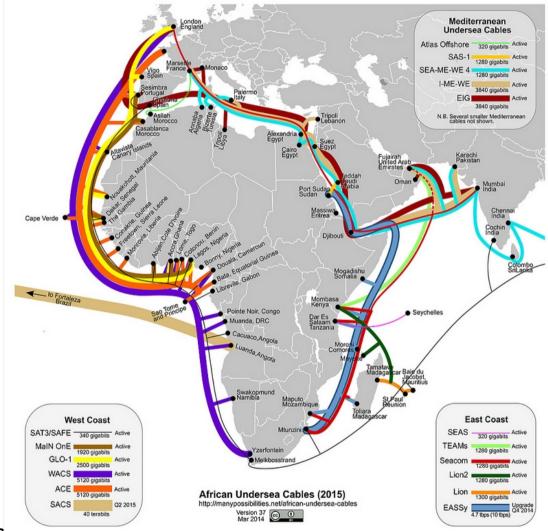
Steerable in both automatic and manual modes

Key Components of Nk System

★The Rack with Science Equipment:

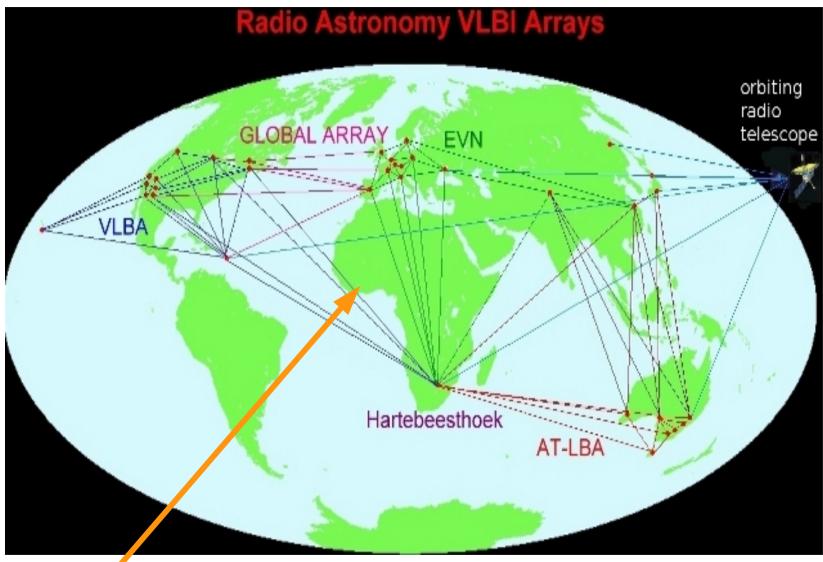
- ROACH-1 - DBBC / MarkV - Pulsar Timing System (PTS) * - Rubidium GPS Clock

*Antenna Steering Controller System (ASCS)


Dual Uncooled receiver (C-band) system at central frequencies of 5 GHz and 6.7 GHz

Potentials and Relevance of Nk

Both Science Cases:


- single dish observations
- VLBI Networks

- Ghana's location of 5° North of the Equator gives it a distinct advantage of viewing the entire plane of the Milky Way and nearly the whole sky better than any existing telescope.
- It's proximity to the Africn Undersea Optic Fiber Cables promises greater bandwidth and faster internet connectivity for data transport, an added advantage

African Undersea fiber Optic Cables 10

The Big Hole in Existing VLBI Networks: Nk?

Existing VLBI Networks

Will full Nk help in any little way?

To Do and Ongoing Tasks

- Hydrogen maser
- Pulsar Timing System
- Fix Az limitation
- Install Weather station (embedded with seismic activities warning system)
- Working to improve the pointing accuracy

Capacity Building in Radio Astronomy & Technology

- Training programmes for graduate students (Royal Society - DARA)
- Summer schools for young astronomers/graduate (eg. WAISSYA-2017): more local ones in future
- Study opportunities for our participating students...
 - Introduction of Astronomy in school curriculum - pushing

- Schools and Group visits at Kuntunse (GRAO)
- Invitational talks at schools/colleges/universities
- Facilitators/Teachers Workshops *
- Astronomy clubs in the secondary schools and higher educational institutions

• Media (FM, TV, print..) interactions and engagements: 13

Astronomy Development: Outreach & Training

Outreach – University Tour

August 25 – September 03, 2017

Royal Society/ Newton Fund: Training Programme

Participants

- Cohort 1 12
- Cohort 2 13
- Cohort 3 11

During 2014 - 2017

Royal Society/Newton Fund Training Outline

Course Units for the Cohorts:

- 1. Astrophysics, Radio Astronomy Theory and multi-wavelength Astronomy
- 2. Radio Astronomy Observation, Survey Astronomy and Communication Skills
- 3. Radio Astronomy Data Reduction and Analysis, Telescope Time and PhD Applications
- 4. Satellite communication and Commercial Awareness (Entrepreneurship)
- 5. Observational and Technical training
- 6. Overseas Experience

Prof. Melvin G Hoare

Instructors for the Cohorts

- 1. Prof. Melvin Hoare (UK)
- 2. Dr. Sharmila Goedhart (SA)
- 3. Dr. Charles Copley (SA)
- 4. Mr. Ian Jones (UK)
- 5. Dr. Katerine Johnson (UK)
- 6. Dr. Jay Blanchard (JIVE)
- 7. Dr. Alastair Gunn
- 8. Prof. Benjamin Strapper & PhD std Thomas
- 9. Dr. James Chibueze
- 10. South Africa AVN and Ghana Team, etc..

Royal Society/DARA Training: PhD & MSc Studentship

Kuntunse Telescope Trainee Operators

- Andrews
- Kingsley
- Benedicta

Cohorts 1 & 2 Products

Alexander – PhD in SA (Rhodes)

Proven - PhD in Ghana (UG)

Benedicta- PhD in Ghana (UG)

Diana- MSc in SA (Rhodes)

- Emmanuel Msc in UK (HU)
- Michael Msc in Russia
- Benjamin Msc in Finland
 Mavis MSc in SA (NWU)
 Prosper MSc in Brazil
- Kingsley PhD (DARA), UK
 Emmanuel Msc/PhD (DARA), UK
 Joseph- Msc (DARA) in UK
 Naomi PhD (DARA) in UK (MU)

DARA – Development of Africa with Radio Astronomy, a Newton Fund Project

The Mega Summer School – WAISSYA-2017

- 17 Instructors from Canada, Germany, South Africa, Nigeria, Gabon and Ghana
- About 80 students from Ghana and other West Africa countries
- Outreach to 3 schools
- Observational training with the Ghana 32m radio astronomy telescope (Nk)

WEST AFRICAN INTERNATIONAL SUMMER SCHOOL FOR YOUNG ASTRONOMERS

Upcoming Programmes (2018)

- + HPC System administrators training
- DARA (Ghana-Kenya) Technical and Observational training

- HPC Applications in Astronomy and Meteorology Training
- DARA/CHPC LINUX / Python training

+ ESO ART Outreach to Cape Coast University

+ Teachers/Facilitators Workshop (Jumping Jive ?)

 Dish Conversion
 Workshop (STFC-UK)

Take Home Messages

- Ghana has launched a 32m radio telescope (GRAO) in collaboration with South Africa at Kuntunse near Accra (known as the AVN Ghana, and as Nk to the EVN community)
- Astronomy has come to stay in Ghana with With Nk as pacesetter: a field the country has warmly embraced.
- Many enthusiastic students and young persons are seeking for opportunities to build carriers in astronomy and related fields to fully realize the potentials in the fields for socio-economic gains
- Ghana (Nk) is calling on all interested parties and institutions for partnerships, supports, collaborations and assistances in all areas of interests.